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Theoretical studies of electrical double layers typically consider the response of ionic conductors to the field
of uniform charge-density distributions � �“�-control”�. Many such analyses predict apparent anomalies of
differential capacitance, C, including divergences and negative values. To clarify misconceptions regarding
these predictions, we critically reexamine some theoretical approaches dealing with the admissible sign of C.
We examine the anomalies’ origin and stress its relation to the artificiality of �-control. We show that calcu-
lations based on �-control can illuminate the nature of instabilities and phase transitions under the physically
attainable conditions of potential control, where applied voltage � rather than � is fixed. For illustration, we
discuss the physical nature of the “ultimate anomaly,” negative integral capacitance predicted by some recent
analyses. We also show that �-control anomalies can explain some experimentally observed features of C���.
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I. INTRODUCTION

Electrical double layers �DLs�, the spatial charge separa-
tion arising at electrified interfaces, play important roles in
surface electrochemistry, colloid science, plasma physics,
and biophysics. A major thermodynamic characteristic of a
DL is its specific differential capacitance, C= 1

A ��q /��� �A is
the surface area�, describing the relationship between the sur-
face charge, q, and the potential drop, �. Starting with the
classical work of Gouy �1� and Chapman �2� and Debye and
Hückel �3� �GCDH�, C became an important descriptor char-
acterizing the structure of charged interfaces. In addition, as
a typical linear-response function, it is closely related to in-
terfacial stability and charging-induced surface phase transi-
tions. These aspects of C, closely linked to the question of its
admissible sign, are the major foci of this study.

The differential capacitance can be viewed from two
physical perspectives: “potential control” ��-control�, where
the applied potential difference is varied and the response is
the charge acquired by the electrode �4–7�, and “charge con-
trol” �q-control�, where the interfacial electrode charge is
controlled while � adjusts in response. However, theoretical
studies usually analyze DL behavior by imposing uniform
�planar, spherical, etc.� surface charge-density distributions,
�. We term this “�-control.” Unlike �- or q-control,
�-control is a purely theoretical construct, one not amenable
to laboratory manipulation �see �8–11� for review�. Numer-
ous studies have shown that, for �-control, there are surface
charge-density domains for which the capacitance of a DL,
or of its “diffuse” or ”Helmholtz” �compact layer� compo-
nents, is negative �12–15,5,6,16–22,7,23–26� �see the Ap-
pendix for a concise discussion of underlying phenomena�.

There remains controversy regarding the interpretation of
these results. Rigorous thermodynamic and statistical me-
chanical treatments, and analysis of electromechanical mod-
els, show that negative C is forbidden under “�-control”

�4–6,27,28�. If found under �-control, negative C indicates
instability and the possibility of phase transformation in a
cell connected to a potential source �5–7�. If instability leads
to a new equilibrium state rather than “short-circuiting” the
DL, C is positive in both initial and final phases; transition
occurs at fixed voltage with a discontinuity in q �analyses of
electromechanical “toy models” �5,6,16,17,9� are illustra-
tive�. Treatments of another experimentally accessible situa-
tion, q-control, indicate that uniform distributions � leading
to C����0 are unstable �8,10,11�. Transition occurs under
fixed electrode charge, while the potential drop � behaves
discontinuously. The final phase can be either homogeneous
or nonuniform, depending on q. In what follows, we apply
these ideas to the analysis of some recent results, both theo-
retical and experimental.

We first consider a recent study by Luo and Yu �LY� �29�
suggesting that the stability conditions and the admissible
sign of C could be different for two closely related cases: a
single electrode �charged plane� in contact with the electro-
lytic half-space forming an “individual double layer” �IDL�,
and the electric cell with two electrodes �two oppositely
charged planes� forming two double layers �TDL�. In what
follows, we demonstrate that qualitative differences between
the IDL and TDL scenarios are illusory.

We then consider mechanisms responsible for �-control
anomalies and show that despite its artificiality, �-control is
a useful tool for understanding the nature of phase transfor-
mations under physically realizable conditions. We apply
these observations to analyzing the “extreme” capacity
anomaly predicted for some ionic DLs, negativity of the in-
tegral capacitance CI.

Finally we consider how �-control anomalies are reflected
in capacitance behavior under �-control.

II. CAPACITANCE OF A SINGLE INTERFACE
AND OF AN ELECTRIC CELL

The suggestion �LY� that the restrictions on C can differ
for the IDL and TDL scenarios relied on three arguments: �a�
a Landau-Lifshitz �LL� thermodynamic analysis �4�; �b� an
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extension of local statistical analysis �16�; �c� an exactly
soluble primitive electrolyte model �30,31,27,28,32,7�. We
address all three arguments and describe their inconsisten-
cies.

A. Landau-Lifshitz analysis: C�0 under �-control

The Landau-Lifshitz �LL� derivation of the stability con-
dition �4� for charged interfaces explicitly referred to two
conductors in contact, i.e., to the IDL. LY suggested that
LL’s derivation of C�0 may not apply to TDL. In fact, LL
analysis is readily extended to describe an electrode pair
separated by electrolyte, i.e., the TDL. To avoid ambiguity,
we almost literally follow the LL treatment.

The grand canonical potential for this system is �Eq. 25.6
of LL�

F̃s�q,�� = Fs�q� − q� �1�

with Fs�q� now the free energy of an isolated cell �TDL
system� of fixed electrode charge, q. The −q� term couples
the electrodes to the potential source. The index s, dropped
in what follows, indicates that all changes in the electrolyte
due to external charges are localized in narrow “surface” �s�
regions near the electrodes, i.e. the DLs. Equilibrium is de-
fined by

��qF̃�q,���� = 0, ��q
2F̃�q,���� � 0 �2�

The subscript � explicitly accounts for �-control implied by
LL, who stated �just preceding Eq. 25.5� that the conductors’
potentials were fixed. Here � is the potential drop between
two electrodes while LL identified � with the potential dif-
ference between two conductors in contact �we later show
that the latter is typically a particular case of the former�. The
first equation is simply

�c�q� = � , �3�

where

�c�q� = �qF�q�

is the equilibrium potential drop across the cell when the
electrode charge is fixed at q.

Equation �3� implicitly determines q as a function of the
interelectrode potential drop; it states that the equilibrium q
is attained when the equilibrium potential drop across the
cell equals the applied voltage. The stability condition of Eq.
�2� then yields

��q
2F�q��� = �q�c�q� = C−1 � 0, �4�

where C �33� is the total �nonspecific� differential capaci-
tance of the whole cell with two electrodes �termed TDL in
LY�. Thus, the condition C�0 explicitly derived in LL for
the IDL under �-control also holds for TDL, an electrolyte
sandwiched between two electrodes. In addition, only with
two electrodes is it practical to study the electric properties
of IDL. If the interelectrode distance d is large compared to
the Debye length LD, then C is just the capacitance of two
IDLs in series,

C−1 = C1
−1 + C2

−1. �5�

Assume C1 of Eq. �5� is the contribution of the “working”
electrode under investigation while C2 describes the “refer-
ence electrode.” By making C2�C1, the TDL is effectively
reduced to the IDL. The total applied voltage drop is then
limited to the IDL belonging to the working electrode, essen-
tially equivalent to the �-control considered in the original
LL analysis. The condition C2�C1 can always be achieved
by increasing the surface area of the reference electrode �34�.
As the IDL is a limiting case of the TDL scenario, both IDL
and TDL obey the same stability conditions under �-control,
reinforcing our point. The derivation of Eq. �4� makes it clear
that if C�0, the cell would be unstable relative to charging
from the source: the release of the energy −���q� due to
electron transfer would overwhelm the increase of the inter-
nal free energy, �F�q�, due to charging of the double layers.

B. Diffuse layer under �-control: Local and nonlocal
statistical models

Consider the LY assertion that universal constraints on the
admissible sign of the diffuse layer capacitance Cd �35� for
IDL are derivable “using only arguments from electrostat-
ics.” Their analysis is based on the one-dimensional Poisson
equation �29�

dz
2� = −

1

		0

�z� �6�

subject to the boundary conditions

		0���0� = �, ���� = ����� = 0 �7�

with � a uniform planar charge density located at z=0, ��z�
the total electrostatic potential, and 
�z� the charge density.
Description of a DL entails unifying Eq. �6� with the statis-
tical mechanics of electrolytes, a detail not dealt with con-
sistently in LY �36�. In what follows, we show that implicit
to LY’s analysis is the assumption of a local relation between

�z� and ��z� �i.e., 
�z�=
(��z�)� and that it is thus restricted
to local statistical �GCDH-type� models.

To fully describe a DL requires augmenting Eq. �6� by an
ionic equilibrium condition relating 
 and �; in density-
functional theory �DFT� �see �37� for review and references�
terms this is

�F��n��r���
�n��r�

+ q�u�r� − 
� = 0, �8�

where �n��r�� is the set of density distributions for cations
and anions ��= � � with electrochemical potentials 
� �Eq.
�8� is expressed in terms of the radius vector r instead of z to
indicate the analysis is general, not limited to 1D systems�,
u�r� is the potential of the external field, and F��n��r���
represents the free-energy functional. The combination of
Eqs. �6� and �8� already transcends pure electrostatics.

The treatment becomes especially simple in the “local-
density theory” �LDT� �37� pioneered by GCDH. In this ap-
proach, the ionic density 
�r�=��q�n��r� can be found from
Eq. �8� as the function of a single variable ��r�=u�r�+��r�
���r� is the ionic contribution�,
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�r� = 
„��r�… . �9�

Consequently, Eq. �6� reduces in LDT to an autonomous dif-
ferential equation whose right-hand side depends on z only
implicitly, through the unknown function ��z�,

dz
2� = −

1

		0

„��z�… . �10�

This leads directly to the condition Cd
LDT�0, positivity of the

diffuse layer capacitance in the 1D LDT treatment �16�.
Familiar transformations �38,39� yield

�2 = − 2		0	
0

�


���d� , �11�

where �=��0�−���� is the potential drop across the IDL.
This determines the specific �per unit area� differential ca-
pacitance,

Cd��� = d�� = − 		0
���/� , �12�

where Cd�0� is defined via l’Hôpital’s rule: Cd�0�
=
		0 �d�
 � ��=0. Since 
��� �
�z=0� and � are of opposite
sign, Cd is positive definite for any finite � �16�,

Cd
LDT��� � 0. �13�

Derived for LDT �i.e., using the relation �9��, this condition
is not applicable to more general statistical models.

In nonlocal �NL� theories, which account for ionic corre-
lations, Eq. �8� is a complex integro-differential equation and
closed expressions such as Eq. �9� do not exist. Hence, � and
Cd cannot be expressed in the closed forms, Eqs. �11� and
�12�, and the condition Cd

NL�0 does not follow. For speci-
ficity, consider a nonlocal density-functional treatment that
approximately accounts for ionic size correlations �40�. The
ionic densities are n��z�=n�

0 exp���q��z�−�
��z�� with

��z� an excess chemical potential quantifying the correla-
tions. The charge density, 
�z�=��q�n��z�, can be written in
the form 
=
(��z� ,z). As ��z� is unknown, z cannot be
eliminated by the functional inversion z=�−1(��z�), and con-
sequently 
 cannot be expressed as a function of � alone.
This example clearly demonstrates the previous argument.

The LY treatment formally used Eq. �11� �see Eq. 7 of
LY� but dropped the arguments of 
. This suppressed the fact
that 
 is not generally a function of the single variable �;
consequently it is meaningless to use � as an integration
variable. After taking the � derivative of this misleading
equation, they obtained an equation �Eq. 8 of LY� identical to
Eq. �11�, with 
��� on the right-hand side. However, this
would be justifiable only if Eq. �9� were satisfied, i.e., within
an LDT framework. Consequently, LY’s condition d���0
allegedly based “solely on the electrostatic nature of DL” is
not generally supportable; their presentation simply repro-
duces a familiar result �16� �Eq. �13�� limited to local statis-
tical models �41�. In fact, nonlocal models accounting for
ionic correlation quite often lead to Cd����0
�12,13,15,21,23–26,26�. Furthermore, we will see that even
for LDT, where the diffuse layer contribution Cd is strictly
positive, the total DL capacitance C can become negative
due to the “anomalous behavior” of the compact layer con-

tribution CH �see Eq. �A5� and the associated discussion�.

C. �-control and the sign of C
in primitive models of DLs

Another “proof” that Cd of an IDL must be strictly posi-
tive at fixed � relied on the analysis of the “primitive elec-
trolyte” between two hard oppositely and uniformly charged
walls �30� �see discussions in �31,27,28,32,7,8��. The corre-
sponding Hamiltonian �per unit area, A� is

H� = H� + �f��zi�� +
1

2		0
�2L . �14�

H� is the ion-ion contribution in the absence of the external
field, the second term describes ionic interaction with the
electrode field, and the last term is the field’s self-energy
�i.e., the unshielded, electrolyte-free, interplate interaction
energy�; L is the interplate distance and f��zi��
= �4� /	��qizi.

From standard statistical methods, the interplate potential
drop is

���� =
�L

		0
+ �f
 , �15�

where

��¯�
 =
	 e−�AH��,�R���¯�d�

	 e−�AH��,�R��d�

is a canonical average with integration over the system’s
configurational space, �, and �=1 /kT. The inverse capaci-
tance Cd

−1=��� is

Cd
−1 =

L

		0
−

A

kT
��f2
 − �f
2� �

L

		0
, �16�

which is simply interpreted: electrolyte, by shielding the
electric field, increases total capacitance relative to the “geo-
metric limit,” CG=		0 /L. The last term in Eq. �14� was omit-
ted in �30�; in addition, the sign of the second term in Eq.
�16� was inverted, yielding the erroneous result

Cd
−1 =

A

kT
��f2
 − �f
2� � 0 �false condition� . �17�

LY assigned physical meaning to a “reduced” �missing the
last term� version of Eq. �14� used by �30�, assuming it de-
scribed an IDL. This is not correct, as without ions, where
both f and H� equal zero, the reduced Hamiltonian vanishes
rather than describing the electric field energy due to a bare
charged wall. Relying on the incorrect literature result Eq.
�17�, LY concluded that Cd�0 for the IDL near a uniformly
charged wall, i.e., under �-control. Ironically, correcting the
sign error in Eq. �17� �where the L /		0 term is still missing�
would lead to the conclusion that an IDL’s capacitance is
strictly nonpositive, which would also be wrong.
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III. ORIGIN OF CAPACITANCE ANOMALIES UNDER
�-CONTROL AND THEIR MANIFESTATION

UNDER �-CONTROL

We have shown that both for a single interface �IDL� and
for the electric cell �TDL�, C−1�0 is permitted under the
artificial conditions of �-control �Secs. II B and II C�, while
C must be positive and finite under the physically achievable
�-control �Sec. II A�. Thus, all the problems raised by the
prediction of C�0 deal with the artificiality of �-control; the
distinction between IDL and TDL scenarios is not really rel-
evant. Mechanisms leading to capacitance anomalies under
�-control are discussed in the Appendix; they can be inter-
preted either in terms of “relaxing gap capacitors” �RGC� or
by focusing on the induced polarity of the electrolyte’s
charge distribution.

Despite being a fiction, �-control remains a useful tool for
analyzing the physics of charged interfaces. To demonstrate
this, we first consider the possibly most intriguing result,
some diffuse layer models’ predictions of negative integral
�total� capacitance �see, for example, �24,25��. We will ad-
dress the question raised recently regarding the physical sig-
nificance of such a prediction �24�.

Secondly, we will discuss how the capacity anomalies un-
der �-control can be reflected in the observed C��� depen-
dencies.

A. Negative integral capacitance and its physical significance

Negative integral capacitance is schematically illustrated
by Fig. 1 �curve 1�, characteristic of some symmetric elec-
trolytes �24�. The region ac where � is negative and CI
=� /��0 differs especially strikingly from “normal” behav-
ior �curve 2�. Before discussing the physical implications of
this prediction, we verify its validity using an exactly soluble
electromechanical “toy” model �42�. To reproduce charging
behavior like that of Fig. 1, we use a slightly modified ver-
sion of the toy model of �6�, a “rigid” classical capacitor with
an intercalated planar “elastic dimer.” The two added “stops”
limit the approach of the dimer planes to the capacitor plates
�Fig. 2�.

This model clearly parallels the interpretation of the ca-
pacitance anomalies given in Appendix, part 2. The left plate
represents the electrode, the right plate the linear component
of the countercharge distribution �with a �-independent cen-
troid position�, and the elastic dimer mimics the polarity of
the induced charge distribution. The energy of this system
�per unit area� is

W��,d� =
�2

2		0
�a − d� +

�� − �d�2

2		0
d +

k

2
�d − d0�2 �18�

�see Fig. 2 for parameter definitions�. The condition �dW��
=0 determines the equilibrium separation d

d��� = �d0 −
�d

2

2k		0
+

�d

k		0
� , � � �st,

dst, � � �st,

�19�

where �st, the solution to d���=dst, is the least charge needed
for the dimer plate to touch the stop. The corresponding po-
tential drop is

���� =
1

		0
�a −

1

		0
P��� , �20�

where P���=�dd��� is the dipole moment �per unit area� of
the elastic dimer. The similarity to Eq. �A9� is obvious. To
relate this model to a symmetric electrolyte �see, e.g.,
�24,25��, we consider a case in which ��0�= P�0�=d�0�=0,
which requires that �d

2=2ka		0. The differential capacitance,
here equal to the integral capacitance CI, is

FIG. 1. Schematic fragments of the charging curves for the DL
with negative integral capacitance CI=� /���� �curve 1� and the
“normal” DL �curve 2�. Along the segment abc, CI�0, while the
differential capacitance C is nonpositive along ab. FIG. 2. Toy model of a textbook capacitor with an intercalated

charged elastic planar dimer. k is the spring constant �per unit area�
of the dimer, ��d� and d are the fixed charge density on the dimer
plates and the dimer’s interplate separation, respectively, and ���
and a are the variable charge density and the fixed gap of the rigid
capacitor.
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�C/		0�−1 = �CI/		0�−1 = �a − 2d0, 0 � � � �st,

a , � � �st.
�21�

It is negative for 0����st if a�2d0. The qualitative charg-
ing behavior for a�2d0 is represented by curve 1 in Fig. 3,
a cusped version of curve 1 of Fig. 1.

Notice that �d
2W�� ,d��� =k�0, indicating that the equilib-

rium charge distribution �defined by the parameter d, Eq.
�19�� is stable for all uniform �, including the C�0 domain.
This suggests that predictions of the same anomaly for the
DL �24,25� are indeed consistent with ionic equilibrium in
the �-control framework. The corresponding energy profile

w��� = W„�,d���… �22�

is illustrated qualitatively in curve 2.
Now consider what happens under �-control, where elec-

trodes are connected to a source and their charge adjusts to
minimize the total energy of the open system �compare with
Eq. �1��,

w̃��,�� = w��� − �� . �23�

When �=0, the energies of the open and isolated ��-control�
systems are both defined by w���. However, for an isolated
system with � controllable, all points on the energy profile
are accessible. In the open system, the equilibrium state, de-
fined by the condition ��w̃��=0=d�w���=0, corresponds to
the energy minimum wmin; �=0 describes a local maximum
and is not accessible. Put differently, C�0��0 describes an
unstable “charge-thirsty” state, so that a short-circuited ��
=0� cell charges spontaneously; the potential drop due to the
electrode charge is exactly compensated by the dipolar con-
tribution from the dimer,

�a = − �pdst. �24�

Increasing � leads to further charging described by the
“equilibrium” segment, cd, in both Figs. 1 and 3, where C
�0. For the symmetric systems considered, the point �=0,
�=0 is the charging diagram’s inversion point; when �

changes sign, � changes discontinuously, with ��� � �2�1.
We expand on this in the next section in relation to C���
behavior.

For further discussion, it must be recognized that the
separation of a DL into two components Eq. �A5� is a matter
of convenience and only a negative total C �not its individual
components� is truly anomalous �43�. Ionic models focus on
the properties of the diffuse layer and thus on anomalies in
Cd, and CH is often viewed as a “buffer” ensuring that total
capacitance C�0. However, the compact layer itself is also
a RGC �see the Appendix� with the gap lH depending on �,
and thus CH cannot be assumed strictly positive �44�. There-
fore, we consider the case when �-control leads to a negative
integral or more generally, differential, capacitance of the
whole DL.

First consider the implications for the most common elec-
trochemical setting, �-control. Reference �24� noted that
negative capacitance or negative differential capacitance
does not imply energy storage but an energy source and is
thus physically meaningless. Our analysis expands on this
assessment. If a stable branch is present, the DL attains a
local minimum with positive capacitance. A branch with C
�0 would correspond to a “high-energy” state �a local maxi-
mum: curve 2 of Fig. 3�, which would, were it achievable, be
loosely characterized as an “energy source.” However, the
corresponding charge distributions are not attainable under
�-control. In other words, C�0 only has a virtual existence;
its appearance under �-control indicates the possibility of a
DL phase transition. At equilibrium, apart from a narrow
critical region surrounding �̄ �7� �see Fig. 4�, the DL behaves
“normally,” with C�0. The effect of criticality on the be-
havior of C��� is discussed below.

In addition to the electrochemical application just consid-
ered, C�0 could conceivably characterize an isolated colloi-
dal particle. Such an interpretation is natural for finite radii
spherical �see �24,45,26� and references therein� or cylindri-
cal �see �46–49� and references therein� particles. In colloids,
it is practically impossible to fix the potential drop between a
particle and an electrolyte so �-control is not readily achiev-
able. For a particle of fixed charge, C�0 can indicate an
unstable uniform distribution of � under q-control �8�.
Studying this requires augmenting the model to lift the re-
striction to uniform �, and to permit “deformable” surface
charge distributions and related conformational changes,
reminiscent of electroelastic instabilities in membranes �10�.

B. Peculiarities of C(�) related to �-control anomalies

Negative capacitance is associated with the decreasing
portion of a nonmonotonic charging curve and is usually
preceded by a local maximum. Figure 4 illustrates two charg-
ing curves ���� displaying C�0 domains. The single extre-
mum curve abc�, clearly exemplified by the “elastic capaci-
tor” �EC� model �5�, has C�0 for ���01. Point c�
corresponds to the “collapse” of the capacitor when l=0 and
the plates of EC come in contact. The curve abcd has two
branches with C�0 separated by the region �01����02
with C�0. For a system connected to a potential source,
approaching a local maximum in ���� �or equivalently, a

FIG. 3. Charging curve for the toy model of Fig. 2 �curve 1� and
its electroelastic energy �curve 2�, both in arbitrary units, with a
�2d0. The slope discontinuity �point b� reflects the influence of the
stop. After the dimer’s plates reach the stops �i.e., for ���st�, they
are maximally separated and the capacitance becomes fixed and
positive.
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vertical asymptote in C� yields a charging instability. Once
stability is lost, electrons from the potential source flow to
the electrode, charging the DL. What happens next?

There are two main possibilities. In one, the increasing
electric field will finally “short-circuit” the DL by triggering
electron transfer across the interface �Faraday process�. The
equilibrium properties of DLs are typically investigated with
the ideally polarizable electrode �38�, where such behavior is
avoided. The fingerprint of this case, where the breakdown
of ideal polarizability is preceded by a charging instability,
will be a sharp increase in C when � approaches the bound-
ary of the ideal polarizability range. This behavior, known
for some interfaces of metal electrodes �i.e., Au, Pt� with
solid electrolytes �AgCl, Ag4RbI5� �50,51�, was rationalized
in �14,5,10� using a microscopic approach accounting for
electron relaxation effects.

A second, more interesting case, is that charging leads to
a new equilibrium state without destroying ideal polarizabil-
ity. A putative cause could be “steric” effects �see �11,52–54�

and references therein� that restrict ionic densities near the
electrode, leading to a new thermodynamically stable branch
corresponding to C�0. This possibility can be investigated
using the original model of the interface indicating the pres-
ence of C�0; however, the calculation needs to be extended
to larger surface charge densities. If the second, increasing,
branch ���� is in a physically attainable �-range, then the
system is a probable candidate for phase transition.

How can bistability be reflected in capacitance behavior?
For simplicity, assume experiments are conducted by mea-
suring the variation in charge density, ��, due to a controlled
finite variation, ��, in the applied voltage, and determining
capacitance as C=�� /��; �̄ in Fig. 4 �the dashed vertical
line� is determined by a Maxwell construction, analogous to
standard van der Waals analysis of vapor-liquid transitions
�37�. Capacitance increases �positive branch 1→2 corre-
sponding to the segment ab of the charging curve� as �

approaches �̄. Near �̄, a transition to the second stable
branch occurs. Here, a small step �� leads to a large change
in �: ����02−�01. The corresponding points on an experi-
mental C plot would be “outliers.” Due to fluctuations, they
would cluster in a narrow region and give rise to the tall
narrow peak in Fig. 4. Further increasing � produces the
second stable �C�0� branch 3→4. The details of the behav-
ior along the wings 1→2 and 3→4 depend on specific equi-
librium properties of the DL along the stable branches ab
and cd, while a narrow peak in C is potentially a fingerprint
of the phase transition.

The analogy with a van der Waals fluid is transparent. C
�0 corresponds to negative compressibility and the charge
discontinuity under fixed � to the volume discontinuity un-
der fixed pressure. Such a narrow peak with large capaci-
tances �up to 2 F /m2� has been seen for interfaces between
mercury and some ionic liquids �55�. While similar to the
C��� plot of Fig. 4 and possibly indicative of a phase tran-
sition, less dramatic explanations have also been proposed
�54�. The crux of this explanation is tied to the competition
between ionic attraction to the electrode resulting in DL
compression and a sharp increase in C at early stages of
charging, and steric effects reversing this tendency at larger
�. Without arguing in favor of either of the two explanations,
we would stress that the domain of C�0 and the existence
of a stable branch are defined by exactly the same two com-
petitive tendencies. In our view, it is very unlikely that all
systems displaying such behaviors are invariably “tuned” to
fit only one of the two pictures.

IV. CONCLUDING REMARKS

Thermodynamic stability conditions under �-control are
the same for a single electrode �IDL� and a cell �two elec-
trodes, TDL�: the total capacitance in both cases must be
positive, clearly contradicting the conclusions of �29�. On the
other hand, domains of negative capacitance are likely to
occur in �-based analysis of various electrified interfaces,
both for IDL and TDL settings. The reason for these anoma-
lies is the charge-induced compression of the effective gap of
the DL, which can also be interpreted in terms of induced
polarity of the screening charge distribution. These can be

FIG. 4. Effect of bistability and phase transition on the behavior
of C��� under �-control. The curve abc� exhibits a single extre-
mum typical of the EC model. The curve abcd, with its two ex-
trema, displays bistability. The equilibrium states are ���1 and
���2. The corresponding segments of C��� are 1↔2 and 3↔4.
Regions �1����0,1 and �0,2����2 are metastable; �̄ is the
critical voltage. Black dots represent fluctuations in the measured
values of the apparent capacitance near the critical point, where �
behaves discontinuously and fluctuates strongly.
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promoted by the electronic, ionic, and polarization responses
to charging.

The notorious exceptions are local statistical models,
where the condition Cd

LTD����0 is not a consequence of
general thermodynamic restrictions, but is inherent in model
limitations. Even here, the total capacitance under fixed �
can become negative, due to electronic and other relaxation
effects leading to CH�0. Predictions of C�0 domains un-
der �-control are indicative of charging instabilities and
phase transitions under �-control or lateral instability under
q-control.

Although the appearance of capacitance anomalies can be
considered ”normal” under �-control �6,24�, further work is
needed to analyze the corresponding critical phenomena. To
study the possibility of phase transitions with charge discon-
tinuity, calculations must be extended to a wider range of
charges, where steric-type contributions can lead to a second
stable branch, C�0. Of special interest are cases in which
this branch arises in charge ranges not “contaminated” by
Faradaic processes. Here it is important to describe the com-
pact layer contribution CH in broader terms than the classical
description as a constant-gap capacitor �44�. Accounting for
microscopic effects can reduce CH

−1, even making it negative,
and thus shifting the critical range toward lower ���. Certain
known patterns of C���, e.g., its steep increase in some solid
electrolytes at the edge of the ideal polarizability range or the
tall narrow peaks in some ionic liquids, can be explained in
terms of charging instability under �-control associated with
the C����0 domains predicted to arise under �-control. To
discriminate between this and other interpretations will re-
quire a more consistent statistical mechanical analysis ac-
counting for microscopic effects.

The implications of capacitance anomalies for the proper-
ties of colloidal macroparticles also deserve attention. Ap-
proximating the particle as a sphere or a cylinder �typical
theoretical models of macroions� and assuming its total
charge can be controlled �fixed�, C����0 would indicate
that the uniform distribution used in the theoretical analysis
is unstable. Might this affect some observable properties of
colloids? This can be addressed with more detailed models
incorporating particle structure and interparticle interactions
and which describe the charge distributions more realisti-
cally, lifting the uniform � approximation.
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APPENDIX: TWO INTERPRETATIONS OF CAPACITANCE
ANOMALIES UNDER �-CONTROL

1. Relaxing gap capacitor (RGC)

The origin of C�0 under �-control can be interpreted in
terms of “electrostriction” of an interfacial capacitor, the
charge-induced compression of its effective gap l��� �5,6�.
The charging relation for this RGC is simply

		0���� = �l��� �A1�

and consequently

�C/		0�−1 = l��� + �l���� . �A2�

When the gap contracts upon charging, then �l�����0. If

��l����� � l��� �A3�

also holds, then the capacitance becomes negative. All exist-
ing predictions of C�0 can be rationalized in terms of the
RGC �see �8,9,24� for review�, recognizing that the effective
gap of DL is defined by the centroids zi,e of ionic �i� and
electronic �e� distributions 
i,e�� ,z� induced by the electrode
charge density �,

zi,e = −
	 
i,e��,z�zdz

�i,e
, �A4�

and associated with the positions of the electronic and ionic
“plates” of the double layer. Here �e=−�i=�.

Handling effects due to induced polarization is especially
transparent in the conventional �although restricted� ap-
proach separating the DL into abutting layers, Helmholtz �H�
and diffuse �d�, i.e., two capacitors in series,

C−1 = CH
−1 + Cd

−1. �A5�

Their dielectric constants are 	H,d and effective gaps are

lH��� = zH��� − ze��� , �A6�

ld��� = zi��� − zH��� , �A7�

where zH��� is the thickness of the Helmholtz layer �typi-
cally identified as the distance of closest approach of the
ionic centers to the electrode’s atomic surface�. The equilib-
rium behavior of the RGC and the existence of domains
where C�0 have been illustrated in detail using the EC
model and its various modifications �5,16,17,8�. However,
EC-based models did not give rise to CI�0. To present some
background for a toy model demonstrating this anomaly, we
now provide another interpretation, emphasizing the “polar-
ity” of the induced charge-density distribution.

2. Induced polarity of the charge distribution

Consider the diffuse layer. For simplicity �but with no loss
of generality�, we identify z=0 with the Helmholtz plane, so
that ld���=zi���. Now introduce

zi
0 = zi�0� = lim

��→0

	 
i���,z�zdz

��
=	 z����
i��,z���→0�dz ,

�A8�

the location of the ionic centroid in the limit �→0. After
adding and subtracting zi

0, the charging relation Eq. �A1� can
be written as
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	d	0�d��� = �ld�0� − Pi��� , �A9�

where Pi���=�z�
i�� ,z�−
i
�1��� ,z��dz and 
i

�1��� ,z�
=����
�� ,z���→0� is the linear approximation to the charge-
density distribution. Global neutrality requires that
��
i�� ,z�−
i

�1��� ,z��dz=0; Pi��� is the specific dipolar mo-
ment of the ionic density distribution, accounting for its
asymmetry with respect to the center of charge zi

0. Then the
capacitance is

�Cd���/	d	0�−1 = ld�0� − ��Pi��� . �A10�

While equivalent to the RGC interpretation, Eq. �A2�, Eq.
�A10� evokes quite a different image of a fixed-gap
�ld�0�=const� capacitor with the polarizable insert. It is es-
sentially equivalent to Eq. �16�, with ld�0� playing the role of
the interelectrode separation L, or to a classical “molecular
capacitor” model �a grid of point dipoles between the plates

of a parallel plate capacitor� �34,56�. The only difference
among these three is in the nature of the induced polarization
P. This interpretation emphasizes the induced polarity of the
ionic charge distribution due to nonlinear charging effects,
the nonmonotonic variation of the induced density profile.
The condition for C�0 is now

��Pi��� � ld�0� . �A11�

It is important to recognize that even LDT models, such as
Poisson-Boltzmann theory, can give rise to polarization in-
creasing C above its “linear” limit. However, the condition
Eq. �A11� is unattainable in LDT �see Sec. II B�. Typical of
nonlocal models, additional charge condensation �over-
screening� near the electrode and the corresponding deple-
tion in the “tail” region clearly increase the polarizability and
make C�0 a possibility.
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